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We consider a stochastic process which presents an evolution of particles of two 
types, A and B, on Z d with annihilations between particles of opposite types. 
Initially, at each site of 7/a, independently of the other sites, we put a particle 
with probability 2p < I and assign to it one of two types with equal chances. 
Each particle evolves on Z d in the following manner: independently from the 
others, it waits an exponential time with mean 1, chooses one of its neighboring 
sites on the lattice Z a with equal probabilities, and jumps to the site chosen. If 
the site to which a particle attempts to move is occupied by another particle of 
the same type, the jump is suppressed; if it is occupied by a particle of the 
opposite type, then both are annihilated and disappear from the system. 
The considered process may serve as a model for the chemical reaction 
A + B---, inert. Let p(t) denote the density of particles in this process at time t. 
We prove that there exist absolute finite constants c(d) and C(d) such that for 
all sufficiently large t, c(d)l-'t/4<~ p(t)<~ C(d)t -d/4 in the dimensions d~<4 and 
c(d)t-t<<, p(t)<~ C(d)t -I in all higher dimensions. This completes and makes 
more precise the results obtained by us earlier and shows that asymptotically 
the density behaves like that in a similar process called two-particle annihilating 
random walks which was studied by Bramson and Lebowitz. Our proofs are 
based on the approach developed in their and our works. We use the basic 
properties of random walk and various tools which have been designed to study 
simple symmetric exclusion processes. 

KEY WORDS: Diffusion-dominated reaction; two-particle annihilating 
exclusion; asymptotic upper and lower bounds of the density. 

1. INTRODUCTION 

T h e  p r o c e s s  c a l l e d  t w o - p a r t i c l e  a n n i h i l a t i n g  e x c l u s i o n  ( a b b r e v i a t e d  to  A E )  

w a s  i n t r o d u c e d  a n d  s t u d i e d  in  ref. 2. I t  w a s  s h o w n  t h e r e  t h a t  p ( t ) ,  t h e  
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density of particles in the AE at time t, is asymptotically bounded from 
above by Ct -~ in the dimensions d > 4  and does not exceed t-d/at ~ when 
t >1 t(e) for all e > 0 in the dimensions d~< 4. The present paper provides an 
asymptotic lower bound for the density of particles in the AE (Propositions 
1 and 3 from Sections 3 and 5, respectively) and improves the upper bound 
calculated in ref. 2 for d~<4 (Proposition 2 from Section 4). When com- 
bined, these propositions state the following: 

Theorem 1. Let p( t )  denote the density of particles in the two- 
particle annihilating exclusion at time t. Then there exist absolute positive 
finite constants c(d),  C(d)  such that 

c(d)t-d/4<~p(t)<~C(d)t -d/4 when d~<4 

c ( d ) t - l < ~ p ( t ) < ~ C ( d ) t  -~ when d~>4 

for all sufficiently large t. 

The proof of Theorem I uses essentially the methodology developed 
by Bramson and Lebowitz (3) for studying the asymptotic behavior of den- 
sity in a process similar to the AE which is called two-particle annihilating 
random walks (ARW). In the ARW, particles of two types, say A and B, 
evolve on Z d. Each particle executes a (simple symmetric) random walk 
independently of all other particles and is annihilated and removed from 
the process when it meets an opposite-type particle; the latter is annihilated 
as well. The AE is a modification of the ARW obtained by imposing one 
additional condition: when a particle attempts to move to a site which is 
occupied by another particle of the same type, this move is suppressed. 
Thus, in the AE, two particles of the same type never occupy the same site 
simultaneously. Consequently, we expect the AE to be a more appropriate 
model of the chemical reaction A + B-~ inert than the ARW (for the 
relation of the considered processes to chemistry, see Section 1 of ref. 3 and 
the references therein). Our interest in the AE was motivated by this fact. 
Also, the upper bound for p( t )  provided in Theorem 1 is used in ref. 4 for 
studying the occurrence of a rare event in the exclusion process. 

The particles of the same type interact in the AE by the rules of the 
(simple symmetric) exclusion process (see Chapter VIII  of ref. 6 for the 
definition). In our proofs, we substitute the exclusion process by another 
process called a stirring system. It is constructed in the following way: to 
each bond of the lattice Z a we attach an alarm clock such that the times 
when its alarm goes off form a Poisson point process on [0, ~ )  with the 
intensity (2d)-~; each time when the alarm goes off at a bond, the contents 
of the sites connected by this bond interchange (see ref. 5 for the complete 
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definition). It is known that if a simple symmetric exclusion process and a 
stirring system start from the same configuration of particles then the 
distribution of this ensemble of particles is the same in both processes. The 
advantage of the stirring system is that the marginal motion of a single 
particle coincides in law with a simple symmetric random walk. This 
property made it possible to adapt to the AE the majority of the tools 
which had been designed for the ARW in ref. 3. 

Let Parw(t) denote the density of particles in the ARW at time t. 
Comparing the results of ref. 3 to the above theorem, one sees that Parw(/) 
and p(t) have the same asymptotic exponents [though c(d) and C(d) may 
differ]. This coincidence for d>~4 has the following intuitive ground. In 
these dimensions, the exponent of the decay of Parw(t) is the same as the 
one obtained by the mean-field approximation argument (see Section 1 in 
ref. 3). Thus, because of the property of the stirring system mentioned in 
the above paragraph, this argument pertains also to the case of the AE, 
leading to the same result as for the ARW. Though the rigorous derivation 
of the decay of particle density in the ARW made in ref. 3 is much more 
sophisticated than just the mean-field approximation, we did not have 
difficult technical problems in adapting it for the AE in d > 4. One may see, 
for example, that Section 5, which gives the lower bound for d >  4, is in 
fact a repetition of the argument of Bramson and Lebowitz for these 
dimensions with slight corrections that made it suitable for the AE. 

The methodology employed for d~<4 is completely different from 
that in d > 4 .  Both for the AE in this paper and for the ARW in ref. 3 
the correct lower bound for the density in d~< 4 is obtained by evaluating 
the advantage of particles of one type over another in a cube D of side 
R at time 0 and showing then that this advantage remains essentially 
of the same order at time x/~.  The implementation of this program 
requires us to control the motion of particles in a way more precise 
than the one provided just by the mean-field approximation. We will 
now present roughly the method which gives the desired control. This 
will allow us to demonstrate where and why the technique developed 
by Bramson and Lebowitz fails to work for the AE and to indicate the 
basic ingredients of the technique which we substitute for it in the present 
paper. 

We will consider two processes called MARW and MAE which are 
modifications oi" the ARW and AE, respectively. They are defined as 
follows. Let us call "alive" any particle that has not been annihilated. We 
postulate that alive particles move in the MARW and MAE exactly in the 
same manner as they do in, respectively, the ARW and AE. However, in 
the modified processes, an alive particle will not be discarded immediately 
after its annihilation. Instead, it will be marked "dead" and continue to 
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evolve according to the stirring rule in the MAE and to execute an inde- 
pendent random walk in the MARW. We also postulate that a dead par- 
ticle cannot annihilate an alive particle of the opposite type. This ensures 
that the distributions of the alive particles in a process and in its modifica- 
tion are the same. We note that the initial configuration of particles for the 
AE (in this paper) and for the ARW (in ref. 3) are chosen in such a way 
that the distributions of all the particles of the same type (i.e., regardless 
the labels "alive" or "dead") in the MAE and the MARW do not change 
in time. Thus, the distribution of the alive particles in a process may be 
characterized if we know that of the dead particles in the modified version. 
The evolution of the dead particles possesses nice properties: (i) new dead 
particles appear in pairs, one A and one B particle, simultaneously and at 
the same site of 7/a, and (ii) in the case of the MARW, the motions of the 
particles from the same pair after their appearance coincide in law and do 
not depend on anything else. These properties were essentially used in ref. 3 
to find the decay of Parw(t). Unfortunately, (ii) is not true for the MAE: due 
to the stirring rules, when an alive particle moves to the place occupied by 
a dead particle of the same type, it will pull the latter to its former position. 
Thus, in the MAE, the evolution of dead particles is dependent on that of 
the alive ones. The measure of this dependence which we needed in order 
to establish the decay of p(t) in d~<4 is related to 

where t is time; D is a cube in 7/d with side ~ - ;  z, denotes the position at 
time t in the stirring system of the particle which originated from z E 77e; 
E, is the expectation with respect to the law of the stirring process with t/ 
being the initial configuration; x is assumed to contain an A particle in t/; 
both sums are taken over all those y 's  which contain A particles in r/; and 
Z~, s/> 0, is a simple symmetric random walk starting from x which is 
independent of the stirring process. Observe that if we substitute ~2 Ily,~ o/ 
by just Ily,~o~ for some y r  then the Liggett inequality (ref. 6, Lemma 
4.12, Chapter VIII)  says (1) is not positive. Andjel (~ modified Liggett's 
argument and obtained a quantitative estimate on (1) for this case. We 
used the ideas of Andjel. We showed the sum of (1) over all x e 71 e which 
contain an A particle in t/ does not exceed const x ~ x (cardinality of 
the boundary of D) independently of 0- Our reasoning is presented in 
Section 3. This section also derives the lower bound for the dimensions 
d <  4 (the case d~>4 is treated in Section 5). The technique developed in 
Section 3 allows us to sharpen some intermediate estimates from ref. 2 
which leads to improving the final result provided in that paper - - the  
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asymptot ic  upper  bound for p(t) in the dimensions d~<4. Sec t ion4  
describes the modifications one has to make  in the reasoning of ref. 2 to 
obtain the improved bound. 

2. BASIC DEFINIT IONS 

In this section we present the studied process and its modification and 
introduce notat ions which will have the same meaning throughout  the 
paper. The presentat ion is brief but should be sufficient for a reader who 
is acquainted with the general f ramework of interacting particle systems. 
For  details, we refer to ref. 2. 

Remark on Notation. f ( x ) [ c t ]  means the value of a random function 
f attained at the point x and on the element c< from the probabil i ty space 
on which this function is defined; we will omit  [ e ]  in the above notat ion 
when it causes no confusion. 

The space of states for the processes which we investigate in this 
paper  will be constructed s temming from the space ~e := {0, 1} z~ or 
~ r : =  {A,B,  A u B ,  O}Z ~. An element from these spaces is called a con- 
figuration of particles, which all are of the same type in the case ~ ,  and 
may be of two different types, called A and B, in the case Y'. For  X e 
(resp., Z e Y'), we say that Z has a particle (resp., an A particle, a B particle, 
both A and B particles) at a site z~  Z d if X(z) = 1 (resp., A, B, A u B), and 
we say z is empty  in X if Z (z )=  0. 

By (g2 A, ,~A, #A) and (~B, ,~B, #B) we denote two independent copies 
of the probabil i ty space of percolation substructures which generate a stir- 
ring system on Z d (ref. 5 describes how an interacting particle system is 
constructed using percolation substructures).  They will determine the 
motions of A and B particles respectively. We let Aqi~[co A] designate the 
position of an A particle in the percolation substructure co A ~ g2 A at time 
t/> 0, given it originated from x ~ Z d. We define Bq~'[~0B] similarly, for a B 
particle. On the space (Q, ~ , / ~ )  := (s x ~B, ~-A • ~ B ,  /~A X #B) we then 
define a process q,, t >/0, in the following manner:  if qo e Y" is its initial 
configuration, then the state at time t ~> 0 on co = co A x co B e Q is 

. , [~]= U %' [~ ]u  U "~?E~"]e~r (2) 
x :qo(x )  = A x : t lo (x )  = B 

For  each r / o ~  := {A, B, 0}z~cY" and each m~g2, we then adopt  the 
following procedure: we label "alive" each particle which is present in qo; 
then, for each particle, we change its label to "dead" at the time when it 
meets (in q.[o~]) an alive particle of the opposite type; the latter is called 
its annihilating companion; certainly, it also changes its label to "dead." By 
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z(x) = z(x)[qo, co] we denote the time when the particle which started from 
x in r/o changed its label in co. We call z(x) the annihilation time. The choice 
of the term "annihilation" was motivated by the process C. defined below 
in which the dead particles are discarded. 

Using the concept of the annihilation time, we define a new process 
denoted by ~,, t >/0, in the following manner: the initial configuration is 
the random variable Co which takes its values in o-# and whose distribution 
obeys the following rules: 

{ Co(X)} x ~ z" is a set of i.i.d, random variables 

such that P[~o(X) 4: 0] = 2p [for p ~ (0, 1/2)] 

and P [ C o ( x ) = A l r  = P[Co(x)=BICo(X) : / :0 ]  = 1/2 (3) 

The dynamics of C. is determined by co ~ s as follows: for each t/> 0, 

~,[o~] := ~C, [~]  ~ B~,[~o] 

where 

Ar ~ ] := U Ar/~'[co] and aC,[co] := U At/)~[ c~ 
x : r  A, x : ~ o ( x )  = B, 

r t x ) [ ~ o ,  co] > t r ( x ) [ r  o~] > t 

In words, r contains those and only those particles which are alive in 
q,[m]. We call C,, t>~O, two-particle annihilating exclusion or simply 
annihilating exclusion. The present paper studies the behavior as t-+ ~ of 
the particle density p(t) in C.: 

p(t) = P[ the  site 0 is occupied by an A-type particle at time t in ~.] 

= P[ the  site 0 is occupied by a B-type particle at time t in ~.] 

To obtain information about ~., we will mainly study r/. under the 
same initial distribution of particles as in ~.. Thus, we make the following 
modification in notations: if not indicated to the contrary, 1"/. is the process 
defined by (2) and such that r/o coincides in distribution with Co defined in 
(3). The law of q,, t ~> 0, with a given r/o is denoted by P,o; the correspond- 
ing mathematical expectation is denoted by E,0. We will usually write r/) ~ 
meaning the position in q. at time t of the particle which was initially at 
x e ~d. Since r/o has at most one particle per site, it will be always clear if 
this sign stands for Ar/~ or for ar/~. 



Two-Par t ic le  Annihi lat ing Exclusion 943 

Finally, for every qoe~r t>~0, and coes we define the function 
k( - )=k( - ; r /o ,  t, w) from ;vd to E d by the following rule: if r/o(y):/:0 and 
r(y)[~lo, co] ~< t, then k(y)  denotes the initial position of the annihilating 
companion of the particle which was initially at y; if r/o(y)r and 
r(y)[r/o, co] > t, then k(y)  := y; if r/o(y) = 0, then k(y) is not defined. 

In the view of the above definition, the notation qkt.,'l means the 
following: it is defined for y e zd and 1/o such that qo(Y)~ 0 and if ~/o(Y)= A 
[in the opposite case, interchange A and B in (4)] 

q,k~.,,~[co] = ~'~nr if  ~(y)[~to, co] > t co e I2, t>~0 (4) 
( Bq~[co] if ~(y)[qo, co]<~t 

where z :=k(y;r/o,  t, co) is the initial position of the annihilating com- 
panion of the particle which started from y. The sign qk~,.~ will be frequently 
used in the sequel. 

3. LOWER BOUND FOR D I M E N S I O N S  d~<4 

In this section we demonstrate the following result: 

P r o p o s i t i o n  1. There exists an absolute positive constant c(d) 
such that for large t, 

p(t) >~ c(d)t -a/4 

Proof. Let D denote the cube in Z d of side R, := 6t m centered at the 
origin, where 6 will be chosen later exclusively in accordance with the 
values of certain absolute constants. The dependence on these constants 
leaves enough freedom to choose 6 in such a way that ]DI = (side of D) d 
always holds (ID] denotes the number of the sites of Z d contained in D). 

Define 

{~ if x e D  Ed 
Iz~(x) : =  Vx e 

if x C D  

From the construction of the processes q. and r we have the follow- 
ing decomposition: 

Io(r = ~ ID(rl,')- ~, Io(q~)I{,l.,.,<., } (5) 
x : q 0 ( x )  = �9 x : q 0 ( x )  = �9 x : q o ( x )  = .  
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where - may be either A or B throughout in (5). The above decomposition 
and the inequality lal >/la + bl - Ibl, a, b ~ •, yield that 

I Y" y:.0~,=, lo(r Eo := E x:,o~x)=A l o ( r  ] 

1"9 x : qo ( x )  = y:r toIY) = B ] 
Z A l ~  E lo(rl] ') 

- E l  ~ In(tlT)I{,~.,.~<.,}- ~ In(q~')I{~.,,)<.,} ] (6) 
x :q0 (x )  = A Y:q0(Y) = B 

Let us first estimate from below the first expectation in the right-hand 
side of (6). It is known (and is easy to verify using graphical representation 
methods) that if a stirring system and an exclusion process start from the 
same initial state, then the configuration of particles at each time t > 0 is 
distributed identically for both processes. (Certainly, the trajectory of each 
single particle differs for these two process, but if we do not distinguish 
between particles, then the set of sites of Z a occupied by all the particles is 
a random set whose distibution does not depend on whether the particles 
interacted by the stirring rule or by the exclusion one.) From the construc- 
tion of the initial state for the process q., the distribution of particles of the 
same type on ;7 a in qo is the Bernoulli product measure with the density p. 
Since this measure is invariant for the exclusion process (see Chapter VIII  
of ref. 6 for the proof), then the number of particles of the same type which 
are present in D at time t > 0 is distributed identically to that at time 0. 
Thus, recalling that the A and B particles evolve independently in q., we 
derive that the first expectation in the right-hand side of (6) equals 

E[l#{xED:qo(x)=A}-#{y~D:qo(y)=B}[]=EI  x~o 0~ ] (7) 

where for each x EJY d we defined that 0.,. equals 1 if qo(x)=A, - 1  if 
qo(X) = B, and 0 if x is empty in r/o. Due to the construction of qo, the ran- 
dom variables 0.,., xeZ  d, are i.i.d, with Pl-0,. = 1] = P [ 0 x =  - 1] = p .  Now, 
to X := ~. ,~o 0,. we apply the reasoning used in the proof of Lemma 2.3 of 
ref. 3 and we get that for an appropriate ct 

0x c, . / ; / . , /" ' -  for all large enough t (8) 
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[The reasoning goes in the following way: when t is large, 
X/(VarX)t/2=X/(2plDI)I/2 is approximately standard normal, thus 
P [ X > ( 2 p  IDI)~/2/2]>c for appropriate c > 0  from which (8) follows.] 
Thus, we conclude that 

Cl N//P •d/2td/4 for all large enough t (9) 

Next, we will estimate from above the second expectation in the right- 
hand side of (6). Since particles annihilate in pairs, then using the sign r/, k(~ 
defined in (4), we write down the following identity, which holds for all 
~ /oe~=  {A, B, 0} z~, all coes and all t>~0: 

In(rlT)lI~(x)<~,l - ~ ID(r/f)IIT(.,'J~,} 
x : t l O ( X )  = A y : t / 0 ( y )  = B 

= ~ [lo(~tl)--Io(~Ik,(x~)] (10) 
x : r / 0 l x ) =  A 

The mathematical expectation of the square of the right-hand side of (10) 
equals 

x ,  y : r l o ( x ) =  A ,  

r io() , )  = A .  y ~ x 

Based on Lemma 2.2 of ref. 2, one easily finds that El ~< 0. Next, using once 
more the fact that particles annihilate in pairs, we have that 

.E3--- [E ( ~ .  [ID(rl:,)--ID(rlkt(z))]lD(~1"t)) 
::r/O(Z) = B 

Thus, the symmetry between A and B particles in the process r/. yields that 
E 3 = - -  E a .  As for E2, we remark that it equals the sum of the mathemati- 
cal expectations from (39) and (41) below in the text. Using Lemmas 3 
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and 4 for estimating this sum and the Jensen inequality, ~:{[(.)2]m} ~< 
{ El-(. )2] } l/z, we then conclude that (below, we use that 131DI = 4R~ a-  ~) 

. r : q 0  . = A  y : r l o ( Y ) = B  

<~ (El + E2 - E3) uz 
~< [2C x/~ (4R d- 1)] ~/2 = C16 ta-~)12td/4 (11 ) 

Now, (6), (9), and (11) guarantee that we can choose 6 in such a way 
that 

Eo >1 C2 td/4 for an appropriate c2 when t is large enough 

Proposition 1 stems from (12) in the following way: 

1 [ 1 ED E~ a>~c3t-a/4 P(t) = 2 - - ~  E ~ I~ >-'2 - 2(6R,) 
X : q o ( X ) =  A o r  B 

(12) 

for all large enough t, where L" 3 > 0 is an absolute constant which may 
depend on d. ] 

In establishing Proposition 1 we used Lemma 3, which is formulated 
at the end of this section, and Lemma 4 from Section 4. We now proceed 
to a chain of auxiliary constructions and assertions which will lead to the 
proof of these lemmas. 

Let X := {0, 1 }Z~x yd be the set of all the configurations of particles 
on Z d in which (i) one particles is marked, (ii) no more than one unmarked 
particle is allowed at a site of 7/d, and (iii) the marked particle may occupy 
a site which contains an unmarked particle. For Z ~ {0, 1 } zd and y e 7/% we 
denote by (Z; Y) the element of X which we interpret as follows: Z is the 
configuration of the unmarked particles and y is the position of the marked 
one. We denote by (Z"v; y) the element of )? which is obtained from (Z; Y) 
by interchanging the values of X at the sites u and v, where u, v ~ 7/d, u :/: v. 

Let U(t), t >1 O, and U denote, respectively, the semigroup and the gen- 
erator of the interacting particle system which evolves in X according to 
the following rules: the unmarked particles interact between themselves due 
to the stirring mechanism, while the marked particle executes a simple sym- 
metric random walk in zd which is independent of the stirring. Formally, 
U is written as 

Ug(fb; y ) =  ~ 1 [g(~bx_.; Y)-g(~b; y) ]  
X,Z:.X" ~ 2 

+ ~ l[g(q$;x)-g(qD;y)], (~b ;y )~"  (13) 
x : x ~  y 
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where a ~ b means a, b are neighboring sites of 7/a, the first sum is taken 
over all unordered pairs of neighbors, and g should be from the domain of 
the definition of U [see the text immediately after (26)]. 

Set now X* := {(X; y )~X:  X(y )=I} ,  that is, X* is the set of all 
elements of X in which the site occupied by the marked particle contains 
necessarily an unmarked particle. By V(t), t >~ O, and V we denote, respec- 
tively, the semigroup and the generator of the interacting particle system 
which evolves in X* according to the following rules: the unmarked par- 
ticles interact between themselves by the stirring mechanism and the 
marked particle moves together with the unmarked particle which was 
initially at its site. Formally, V has the following form: 

Vg(r y)= 1 
~-~ [g(~b"=; y)-g(~b; y ) ]  

x , z : x ~ z  
x ~ l  - V z q - y  

+ ~ l [ g ( r 1 6 2  ( O ; y ) e X *  (14) 
x: .x"  ~ ) ,  

where the first sum is taken over all unordered pairs of neighbors which 
satisfy the indicated condition. 

The lemma below compares the values of a particular functional of the 
processes U and V. Below, Z~:, t >10, denotes the simple symmetric random 
walk on 7/u starting from x. 

Lemma 1. For an arbitrary h e N ,  let D:=[--h ,h]ac~7/a  be the 
cube in 7/d of side 2h centered at the origin. Define 

AD := {z = (z I ..... z d) ~ ~_d: Ilzl := max [zil equals either h or h + 1 } 
l < . i < ~ d  

to be the union of the boundary points of D and ~_d\D. Let AiD denote the 
union of the faces of AD which are orthogonal to the ith unit vector 
ei := (0 ..... 0, 1, 0 ..... 0) (1 on the ith place): 

A~D := {zeAD:  z ' e  { - h - -  1, - h ,  h, h+  1}} 

Then, for the function f :  X ~ R of the form 

,o,x,),o,y, ,15, 
x : x ( x } =  1 
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any configuration (X; v) e X*, and any s/> 0, it holds that 

0 <<, (V(s) - U(s)f)(z;  v) 

<~- ~ ~ P[Z~ ,_r=y] (P[Z~ 'eA jD])2dr  (16) 
d j = l  y.Eza 

Proof. We start with some auxiliary constructions which we will use 
to couple the processes U and V. Let (~a,  ~A, ttA) be an independent copy 
of the probability space of percolation substructures which generates the 
stirring system (we use the same symbols, since this copy will be used solely 
within the proof of this lemma). Also, by (F, o ~ r ,  ttr) we will denote the 
probability space of the percolation substructures which generates the sim- 
ple symmetric random walk on 7/a which starts at zero. We postulate that 
(~A, ~A, tta) and (F, o ~ r ,  ttr) are independent. The mathematical expecta- 
tion with respect to the measure tt r (it A) will be denoted by Er (respec- 
tively, Ea). The expectation with respect to /~Axttr on the space 
(~A X F, o ~A x o ~ r )  will be denoted by n:~ • r. 

Assume e)ef2 A, ~,eF, and r>~0. Put a configuration ~be {0, 1} Z~ at 
time 0 in co. The configuration which is obtained from ~b at time r in o~ will 
be designated by ~bT. Similarly, put a particle at time 0 at the origin of Z d 
in y. The position of this particle at time r in y will be designated by 0~. 
For y ~ 77 d, we then define y~ := 0 ~, + y, so that y~,, r/> 0, is a trajectory of 
a simple symmetric random walk in Z d starting from y. Also, by (~b; y)~.~, 
we will designate the configuration (q~; z )e  .~" such that ~0 = 067 and z = y~,. 

Below, we will need one important property of the stirring system, 
which we recall now. Let (, (~  {0, 1) Z" and z~72 d be arbitrary and such 
that ( ( z )=  1 - ( ( z ) = 0 ,  while ( ( u ) = ( ( u )  for all u 4 z .  With some abuse of 
notation, let {z} denote the configuration which has a single particle at z 
and all other sites empty. Then for any co e f2 and r >t 0 it holds that 

( 7 = ( 7 u  {z}7 (17) 

In words, (~ has a particle at each site where (7 has and one more particle 
which is that very one which originated from z; moreover, its position at 
time r depends solely on co. One can verify (17) straightforwardly. 

Let now (~b; y) be an arbitrarily fixed configuration from X* [recall, 
by the definition, this implies ~b(y)= 1] such that ~(y + e t ) =  0 and denote 
x := y + e j .  For this (r y), define the function ~r .): ~A x F x  
R+ --. ~ by 

qs~r y, r ) : =  fE(~b; y)7 '~'] - f[(~b"-"; y)~"~'] 

+ f[(r x)'~"] - f [ ( r  x)~ ~ ] (18) 

w h e r e f i s  from (15). 
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Assume that  y ~ e F  is such that  y~,eD and x~tr Then, for this 7~ 
and for every w e l 2  A, the last two terms of (18) are zeros because of the 
form of f .  Now,  due to our  choice of  r and y, it holds that  ~bXY(x)= 
1 - Cx.,,(y) = 1 - r  = ~b(y) = 1 and ~b"-"(z) = r when z is neither x nor  y. 
Thus, using (17) and the particular structure of the function f ,  we derive 
that 

q~c~;,,)(o~, ~,,, r ) =  f [ ( r  y )7  "~] _f[(r  y)7.y] 

= Io({y}~,)- ID({X}7) (19) 

for any (o independently of what  particular Y l we have chosen. 
Next,  we recall that the marginal  mot ion  in the stirring system of a 

particle which originates from any z e ga  coincides in law with the simple 
symmetr ic  r andom walk which starts from z (recall that  this r andom walk 
is denoted by Z , ,  t>~ 0). Thus, 

~:~ [I~({Y}7) - Io( {x}7) ]  = p [Z;Y e D]  - P [Z;~ e D ]  

= P [ Z f e + O , D ] - P [ Z f e - a , D - e , ]  (20) 

where 

+a,D:={zea ,D:z t=h} ,  - a , D - e , : = { z e A , D : z ' =  - h - l }  

The last equality in (20) is obtained by coupling the random walks Z~' and 
Z~' in such a way that  they move simultaneously in the same direction. 
Using the same coupling, one also gets the following implication: 

y~ e F is such that  y~ e D 

and x~,C_D~yl~Fissuchthat),~'e+OiD 
Thus 

#r[7~eFissuchthaty~'eDandx~,'r (21) 

Combining  ( 1 9 ) - ( 2 1 ) ,  we conclude that  

~a • r [~ir Y, r)II.,.~o,~r , ] 
= P E Z # e  +a,D](PEZf~ +a,D]-  mEZ:'~-a,D-e,])  (22) 

The same.way  of reasoning gives that 

~ x r [r ~, r)I~:,~r o..,.~'E,I ] 

= P [ Z " e - a , D - e , ] ( m [ Z f e - a t D - e , ]  

- P E Z f e  + a , D ] )  (23) 
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Next, because of the particular form of the function f ,  we have that 
O(~o, 7, r) = 0 for every co e 12 ~ when 7 ~ F is such that both x, ~ and y~ either 
belong or do not belong to D. Consequently, 

leo • r [r176 7, r)I{o,~O,,dx~D)or(y'r162 = 0  (24) 

It is important to observe that (22)-(24) hold for any (r y ) e  X* such that 
r  and do not depend on the values of r on Zd\{X, y}. If, to the 
contrary, ~b(x)=l, then r162 which yields that Ot~;,.l(co, 7, r)=O. 
Combining the latter with (22)-(24), we finally conclude that 

0 ~< Ea = rOl~: ,,)(o~, 7, r) 

~< (p[Z~' e + a , D ]  - P[Z~e - a , D  - e, ])-" 

<~ (P[Z" e.4~D]) 2 (25) 

for any (r y)eX* independently of the values of r on Za\{y}. 
We now start the reasoning which will connect (25) to the quantity we 

wish to estimate. 
From (14) and (13) we have that 

( I V -  u] g)(r y)= ~ 1 [ g ( ( r  y))-g((r y)) 
A : .,c ~ ) ,  

+ g((r x ) ) -  g((r x))] (26) 

for any (r y)eX*. In what follows g from (26) will be taken equal to 
U(r)f. Since f is a cylinder function, then (by the Hille-Yosida theorem, 
for example 16)) U(r ) f i s  in the domain of definition of U. It may be checked 
directly that it is also in the domain of the definition of V. The fact that 
U( r ) f i s  defined on the whole .(" should not be confusing since (~b; v)e  X*. 

It is convenient to introduce an auxiliary family of operators 
{Ff, Ff,  j = 1 ..... d} acting on the set of the functions from .g to R by 
[below r v ) - r  to avoid complicated superscripts] 

Ff  g(r y):--2~ [g((0; Y))-g((r  y); y)) 

+g((O(y+ej, y); y+_ej))-g((r y_+ ej))] 
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for (r y)~ ~'. Then, using the integration by parts formula, (26), and the 
above-defined operators, we have that 

(V(s)- U(s)f)(x; v)= (I~ V(s-r)[ V -  U] U(r) f dr)(X; v) 

= ~ (fo V(s-r)[F++F]-]U(r)fdr)(Z; v) (27) 
j = l  

It follows straightforwardly from the corresponding definitions that 

F~-U(r)f(r215162162 V(r y )~X*  (28) 

From the above identity and (25) we have that for any (X; v)eX*, 

V(s - r) r~- U(r) f (z ;  v) 

= IFI~-:V~[F + U(r) f(r  y) I (Z; v),_, = (r y)]  

~<~d IFIZ;vJ[ { P [Z: ' - '  e A, D] }2] 

1 
2d,~z, [Zs_ r y]{P[Z~'eA~D]} 2 (29) 

where E ~z:v~ denotes the mathematical expectation with respect to the law 
of the process V which started from (Z; v); (Z; v)s_r and vs_r are, respec- 
tively, the state of this process and the position of the marked particle in 
this process at time s -  r. Observe that the last equality was obtained using 
the fact that the marginal motion of this particle coincides in law with a 
simple symmetric random walk in 7] a starting from v. Also observe that 
(Z; v),eX* for all t~>O, which made it possible to apply (28) in deriving 
the intermediate inequality in (29). 

Reasoning as for (29) but using another inequality in {25), we also 
have that 

0 <~ V(s - r) F~- U(r) f(z; v) (30) 

Observe now that changing appropriately the definition of r162 one 
derives that (29), (30) hold for any F f  with AID being changed respec- 
tively to AiD: Applying (27), one then derives the assertion of the 
lemma. II 

We will now show how the processes U and V relate to the process q.. 
Let Z be a configuration of A and B particles on 7] a such that an arbitrarily 
fixed site, say v, is occupied by both A and B particles. Let a Z denote the 
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configuration obtained from ~ by erasing from it all its B particles. Recall 
the definitions given after the proof of Proposition 1 and consider the con- 
figuration (AX;v)eX*. We recall that (ax; v) means the configuration 
which has an unmarked particle at each site where X has an A particle, and 
it has a marked particle at v. Then, from the definition of the processes t/., 
V, and U, we derive that the pair (Uy:xt,,~=a at/,~'; at/~ ') [respectively, 
((.Jy:~<j.)=a at/Y; nq~,)] is distributed exactly like the configuration of all 
unmarked particles and one marked particle in the process U (respectively, 
V) at time t given the initial configuration of this process was (ag; v). This 
fact leads to the following [ f b e l o w  is from (15)]: 

IFz [ID(ar/~ ' ) ~ ID(Aq~,')]=V(t)f(Ax;V) 
Y : Z I Y )  = A 

~-z [ID(Bqvt) E ID(Atlv)] ~- U(t) f(Ax' v) 
y : x ( y )  = A 

(31) 

Let us postulate that if in a configuration, two alive particles occupy 
the same site, then they change their label to "dead" immediately after the 
process t/. starts from this configuration. Thus, if t/. starts from X, then 
k(v) = v independently of the evolution of t/.. Hence, (31) lead to 

F-Z[{ID(Aq~)--ID(Oq~(L")} ~ ID(Aq3t') 1 
Y : X ( Y )  = A 

= [ V ( t ) -  U(t)] f(az; v) (32) 

The left-hand side of (32) is exactly the quantity we wish to estimate 
in the following Lemma 2. Thus, (32) suggests that we use Lemma 1 for 
this need. However, the assumption k(v)=v which allowed us to derive 
(32) is never true in the case when t/o contains at most one particle per site. 
In fact, given v ~ Z a, we know nothing about the distribution of k(v) in the 
process t/.. In the following lemma, we overcome these difficulties and 
estimate the left-hand side of (32). 

Lemma 2. Under the assumptions and designations of Lemma 1, 
for any qo e ~ and any x ~ Z d such that qo(X) -- A and all t/> O, it holds that 

y : % ( y )  = A 

<~ ~ P[Z~-r=Y]{P[Z~eAiD]} 2dr 
i= I ),EZ d 

(33) 
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ProoL Fix t > 0 and let r/o and x satisfy the lemma's  assumptions.  
Choose arbitrari ly v e Z d, tl e ~" such that  t/(x) = A u B and z ~< t. Reasoning 
as for (31)-(32), we obtain that  

z '~162 
Y:~o(Y} = A 

= ~,oE( V(t - r) - U(t - z)) f(Arl; V) I t/, = 7, Z(X) = Z, t/~ = V] (34) 

where At/ is obtained from 17 by erasing all its B particles. Now multiply 
both sides of (34) by P,~0[r/, = r/, r ( x ) =  r, r/: = v] and take a sum over all 
f l e X ,  v e Z  a, r e  [0, t-]. After this procedure,  the left-hand side of  (34) 
equals the left-hand side of (33), while the right-hand side is (l below is the 
Lebesgue measure on •) 

j = l  v d 

• e.0 y. e [ z 7  . . . .  = y ]  
y e Z  a 

x {P[Z~' eA jD] }2  dr z ( x ) = r ,  ~l~=v] (35) 

where in deriving (35) we used L e m m a  1 and the fact that  the r.h.s, of (16) 
does not depend on the values of t / o n  71d\{V}. 

Let O denote the set of  all paths of a simple symmetr ic  r andom walk 
in Z d which starts from x. An element of O will be denoted by 0; then, Oq 
is the position of the path 0 at time q and 0[~.b ~ is the port ion of this path  
from time a to time b. For  r/o and x fixed above and 0 e O, let ~o be the 
distribution of z(x) given that  the particle which started from x in t/o 
followed the path  0 from 0 to ~ ,  i.e., 

~0(I-a, b ] ) : =  P.01-r(x)e [a, b] I rr~o, o~1 = 0[o, ool] 

=P,,o[Z(X)e[a,b]l t l~o.b]=Oto,  b]], V 0 ~ < a < b ~ < ~  (36) 

where the last equality holds because the mot ion  (in the process t/.) of a 
particle after it has changed its label to "dead" does not depend on how 
this particle arrived at the point of Z d where it was annihilated. 
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Using (36) and the fact that the marginal motion of a particle is a 
simple symmetric random walk, we write 

f2 ~. l(dz) P.o[*(x) = z, q~ = v] 
v~Z d 

= ~ ~o(&)  P,,oE,r~o,~l = ~ ~-1 
OeO 

= 2 Co(dr) PEZ~o.,] =0[o.~]] (37) 
0 ~ 0  " 

Ot Plug (37) into (35) now and change appropriately Z~ . . . .  to Z . . . . .  . After 
this procedure, the j th  term of (35) becomes 

?o;2 d - '  r PEZ~o. ~l = OEo.~l] 
0 

x ~ PEZ~ 
)' E Z d 

= d - '  ~ No(dz) PEZ~o . . . .  ] : 0 [ 0 .  , - - r ] ' ]  

OeO:OtEdjD 

x {PEZ~',-'r.,~ = % . . . .  1] }2 ar 

~< d -~ P [Z~o . . . .  ] = 0[o, ,_r]] 
Oe O:Otm zisD 

• { p Ez~',~,. ,~ = 0e,_,.  , j ]  }2 ar 

= d - '  P [ Z , _ , =  y]{ [Z; sAjD]}2 dr (38) 
y d 

Summing the r.h.s, of (38) over all j =  1,..., d gives the r.h.s, of (33). I 

I .emma 3. Under the assumptions and designations of Lemma 1, it 
holds that 

E [  E (lD(rlX)--lD(tl f{x)))  E In(q:')] 
x:rto(X) = A Y:q0(Y) = A 

<<.Cx/~I,~tDI for all t~>0 (39) 
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Proof. If W~, s >/0, denotes a one-dimensional random walk starting 
from z ~ E, then for any y = (yl ..... yd) ~ zd  and any j = 1 ..... d, 

4c~ 
ff~FZ.'r'~ AjD'] <~ P[ W~'JE { - h -  1, - h ,  h, h+ 1}] < r ~  w- t> 0 (40) 

where the last inequality holds because 

C, 
supP[Wr"=Z]~<r-  ~ for an appropriate C2>0andVu~77 ,  Vr>~0 
z E Z  

Substituting (40) in (33), we have that for any qo, 

X : q o ( X )  = A Y : q o ( Y )  = A 

1 a '4C2 , Y. PrZ.e, jD] fi-ya," 
dj 

= x : r / o ( X )  = A 

1 a 
<~- E C 3 v / 7 1 3 j O l = f  x/~13~Ol dj=~ 

where we used that Z.,.E~,a P [ Z ~  G] = IGI for any finite G~ 71 a. Integrat- 
ing the above inequality over all r/o with respect to the initial measure of 
the process r/., we get the assertion of the lemma. I 

4.  U P P E R  B O U N D  

This section will provide an asymptotic upper bound for p(t). 

Lemma 4. Under the assumptions and designations of Lemma 1, it 
holds that 

X : q 0 ( X )  = A y : t / 0 ( y )  = A 

<~Cw/~IA,D I for all t~>0 (41) 

Proof. In the proof of Lemma 2.3 of ref. 2, estimate the right-hand 
side of (2.21) from above by (P [Z~'~ zllD ])2/2d. Continuing then as in the 
proof of that lemma, we substitute (2.22) from ref. 2 by (Fff from ref. 2 is 
actually - E T ,  which was defined in the proof of Lemma 1) 

V ( s - r ) F  + u(r) f(x;v)<~ 1 ~ P [ Z  7 r = y]{P[Z~ 'EzI ,D]}  2 
d .1. ~ za 

822/78/3-4-19 
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Then Lemma 2.3 of ref. 2 will assert that 

(U(s)- V(s)) f(x; v) 

l a ~ "  <~dj~=, ~,~z~ P[Z7_~= y]{P[Z~'edjD]}2 dr (42) 

The same argument as we used in the proof of Lemma 2 of Section 3 shows 
then that for each r/o and x such that r/o{X)= A, 

IFno[(lD(rl~I":))--ID(rl7)) E I D ( q ] ' ) ]  
.v:q0(y) = A 

) ' ~ x  

~< r.h.s, of (42) with s =  t (43) 

The above inequality then yields (41) by the same reasoning as used in the 
proof of Lemma 3 of Section 3. II 

Take now R, := fit l/z, where the value of 6 will be chosen later inde- 
pendently of t. Let R, be the side of the cube D. Then 

C x/7 IA,D[ = 4C xF (R,) a-~ = C4Rat for an appropriate C4 (44) 

Using (41) and (44) to estimate the last mathematical expectation in (2.39) 
from the proof of Lemma 2.6 in ref. 2, we then obtain the following 
strengthened version of the latter: 

Lemma 5. Let D be the cube in 7/a with side R, centered at the 
origin. Then for all sufficiently large t, 

2 I~,(~s)- }2 io(~2') 
)':rl0(y) = B 

<~ C6 Rd/2 for all s t  It~2, t] 

Now, in the proof of Theorem 1.1 of ref. 2 substitute the definition of 
the function g, (2.47), by 

g(t):={Cst-a/4 when d~<4 
Cst-~ when d > 4  

then change respectively (2.48) and use the above Lemma 5 instead of 
Lemma 2.6 from ref. 2 throughout the whole proof of Theorem 1.1 of ref. 2. 



Two-Particle Annihilating Exclusion 957 

(We recall that the values of the absolute constants C5 and 6 are deter- 
mined in the course of this proof.) This will strengthen Theorem 1.1 of 
ref. 2 in the following manner. 

Proposition 2. There exists a finite constant C(d) such that when 
t is large enough 

p(t)<~ C(d)t -d/4 when d~<4 

<<. C(d)t -~ when d > 4  

5. LOWER B O U N D  FOR D I M E N S I O N S  d~>4 

In this section we show that p(t) is bounded from below by 
const • t - t .  Together with Proposition 2 it shows that t -~ is the correct 
exponent of the decay of the density in the AE in the dimensions d i> 4. The 
idea of the reasoning that establishes p(t)>~const x t-1 is borrowed from 
the ref. 3, Section 3. 

The concepts used below are defined exclusively either in the course of 
this section or in Section 2, though the notations may coincide with what 
we used in Sections 3 and 4. 

For a configuration y t ~  := {A, B, 0} z~ of A and B particles on Z a 
and x~ t Z d such that y(Xl)= A, we define the process X; ~', t >_-0, in the 
following manner: its state space is 7/a and its path is a function of o~ con- 
structed by the following rule: for each co t (2,  consider q,[co], t>~0, with 
qo=~,; then for s t  [0, T(x~)[y, o9]], X]~[y, o9] coincides with the path in 
this tl.[og] of the alive A particle which started from xl ;  from r(x~) on, it 
coincides with the path (in the same r/ . [w]) of the dead B particle which 
annihilated that A particle; this happens until the first moment when this 
B particle meets an alive A particle; from the meeting time until the A par- 
ticle which has been met is alive (in q.[og]), the path of this particle coin- 
cides with the path of X~"[y, og]. We note that in order to indicate 
explicitly the dependence of the process of the configuration y, we put 7 in 
the square brackets because it will be random in the sequel (recall Remark 
on Notation in Section 2). Formally, X; ~', t/> 0, can be written as 

X~" = Aq~'k for s t  [rk, ~(Xk)) 

B v k = q~ for s t  [r(Xk),rk+l)  

where the sequence 

{ X  k m XkE7, w], Y k  = Yk[7, W], rk = rk[7, 09] }k~ ~+ 
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is defined recursively in the following way: Yk is the initial position of the 
annihilating companion of the A particle which started from xk; r~ = 0 and 
for k =  1,2 ..... 

rk+ 1 := inf{t > rk: nt?~'k[co] = Ar/)"[W] 

for some x s.t. ~ ( x ) = A  and r(x)[~,, co] > t} 

Finally, xk + l, k/> 1, is such that 

Next, for a configuration 7 ~ ~ of A and B particles on Z d and x~ e E d 
such that 7 ( x l ) = 0 ,  we define the process )?~", t>_-0, in the following 
manner: We first introduce the configuration ),-"e aj by 

e V(z)__{~z) ifif Z~yz=y for ) ,e{A,B,O}ZU'andy~Ed (45) 

and then postulate that 

.f(~[),, co] = X~'[~Y, col for all s>~0 and all coeI2 

Directly from the construction of the processes X and )7 we derive the 
following result: 

Lemma 6. For  a configuration creW, let r  denote the 
value that the annihilating exclusion process attains at the site x e  7/a at 
time t on the percolation substructure 09 ~/2 given 3o = ct. Let ), e ~ and 
y e y_a be such that y (0 )=  A. Then for all t t> 0: 

(i) ~,(z)[y, co] = ~,(z)[7", o9] for any z :# X~[7-", 09] = )7~'[7, co] 

(ii) ~,(X~'Ey.", co])[y.", 09] is either A or 0, while ~,(?~'[~,, co])[y, co] 
is either B or 0 

(iii) r -'', co])[7-", co] = A  (resp. 0) if and only if r o9]) 
[7, co] = 0  (resp., B). 

Fix t >/1. Let F be an abstract probability space on which two families 
of random variables { r  and {6.,.}.,.~z, are defined in such a way that 
they are independent (within each family, between the families, and of 
everything else), identically distributed within the same family, and for each 
x e Z  d, 

P [ r 1 6 2  

P[r  = 0 ]  = I - -2p 

P[6., .= 1] = 1 -  P [ 6 , . = 0 ]  = ( 4 t ) - '  
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To each y �9 F there corresponds a configuration from Yr in a natural 
way: a site x �9 71 a is occupied by an A or B particle or is empty in this con- 
figuration if and only if the value of Cx[Y] is, respectively, A, B, or 0. The 
configuration that corresponds to y �9 F will be denoted by the same symbol 
y. (This should not yield confusion, since when ~ appears as an argument 
of a variable it will always be clear f rom the context and from the definition 
of this variable whether y is an element from F or the corresponding ele- 
ment from ~ . )  One easily sees that {~bx}x~z~ is constructed in such a way 
that the distribution of particles in ~, coincides with the initial distribution 
of particles in the annihilating exclusion process. The family {6x}x~z, is 
designed to construct a set ~r of sites which is sufficiently "thin" in 7/d. 
Namely, for each ) , � 9  we define d ,=~c~[y ]  :={X�9  6 x = l  and 
Cx B}. 

Let Y.~[~,,-] stand for X~[7, . ]  if ) , ( x )=A and stand for JT~[~,, .]  if 
y(x) = 0. The following lemma concerns a particular property of the set of 
the processes Y originated from the points of ~r To  formulate this lemma, 
we introduce more notations: For  distinct x and y from ~r the sign 
Y]~ ~ Y~' will mean that at time s either Y.~ and Y~' interchange their posi- 

x I,  v _ x x x tions (i.e., Ys = Y~-, Y~ - Y , - ,  and Y~ r Y,_), or one of them jumps to 
the site which is occupied by another  (i.e., Y~ = Yf and Y~_ #: Y~'_). The 
sign ~y = ~y[y,  co] will be a shorthand for the following expression: 

Y Y]'[y, col = 0  and Y~[7, co] q* Y~[7, o9] 

for all s � 9  [-0, t] and all z �9 sC, E y ] \ {y  } 

L e m m a  7. P [ 3 ! y � 9  for all sufficiently 
large t. 

Proof. Since for distinct y~, Yz, 

{w, ~,: y~ �9 ~r and ~,,, } c~ {a), y: Y2 �9 ~r and ~.,'2 } = ~Z~ 

then the probabili ty of interest equals 5-'.y~ z, P [ y  �9 ~r and ~y] .  Using then 
the invariance of the measures on F and on s with respect of the transla- 
tions of ;ya, we rewrite this sum in the following equivalent form: 

Z p [0 �9 ~r yo  = _ y and yO q .  y~-  y 
y ~ Z  d 

for all s � 9  I-0, t] and all z - y �9 ~r 

= P [ 0 � 9 1 6 2  y o . / .  ys  for all s � 9  [0 ' t]  and all z � 9 1 6 2  

To prove that the last probability is at least (1 -p )Z / (8 t ) ,  we reason in the 
following manner. 
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Assume 0 and some x belong to sO,. Due to the construction of X and 
)?, we have that yO and Y~ interact by the rules of the stirring mechanism 
when the evolution of both is ruled by coA or by coB, whereas they behave 
like two independent random walks when the evolution of one of them is 
ruled by coa and that of the other by coB. Using this fact, we derive that 

p [ yo ~ y~: for some s ~< t I 0, x t sr ~< P [ 2Z o = x for some s ~< t] 

2 o >/0, is a rate-2 simple symmetric random walk in Z d starting where Z s, s 
from 0. Thus, 

p [  yO ~__~ y~ for some x t  sr and some s~< t I 0 t ~r 

< < . r F [ # { x : 2 Z ~ 1 6 2  (46) 

Given that x :/:0 belongs to a path 2Z~ s t  [0, t],  the probability that it 
belongs to sg, equals ( 1 - p ) / ( 4 t )  (by the definition of {~bx} and {fix})- The 
mean number of distinct sites of 7] a visited up to time t by a rate-2 simple 
symmetric random walk is not greater than 2t, the mean number of the 
jumps of this walk. Consequently, (46) is not greater than (1 - p ) / 2 ,  which 
yields that 

p[yo,._+ y~ for all s t  [0, t] and all z t  J , \ {0}  I 0esr  >/(1 - p ) / 2  

Since P [ 0 t s r  = ( 1 - 0 ) / ( 4 0 ,  the assertion of the lemma follows. | 

Proposition 3. There is a positive constant c* such that for suf- 
ficiently large t, 

c * t - l  <~p(t) 

Proof. Pick co t ~ ,  y t Z a, and ~ t f" for which 

Y;"[y, co] = 0 and Y:~[y, co] q* Y~[y, co] 

for all s~ [0, t] and all z t  ~ [ y ] \ { y }  (47) 

Assume for concreteness y ( y ) =  0 (the same reasoning will pertain to the 
opposite case), so that Y~' in (47) stands for )(~'. Consider now the con- 
figuration y-" [recall the definition (45)]. By the construction of the paths 
Z and )(, we have that .Yfi~[y, co] =X;f[y: ' ,co] for all s t  [0, t]. By our 
choice of y, co, and y, )(~'[~, col does not intersect Y~ for all s t  [0, t] and 
all z t  sC,[y]\{y}. Thus, using the fact that sC,[y-"]k{y} =sg , [y ] \ {y}  and 
applying (i) of Lemma 6, we derive that Y~[yY, co] = Y~[y, co] for all 
s t  [0, t] and all z t s ~ c , \ { y } .  Consequently, (47) is also true for co, y, and 
y-". Applying now (ii) and (iii) of Lemma 6, we conclude that the site 0 is 



Two-Particle Annihilating Exclusion 961 

occupied by a particle at time t either for the triple ~o, ),, y or for the triple 
o9, ~,Y, y. But given that  a site belongs to ,at,, it is occupied by an A particle 
with the probabil i ty p / ( 1 - p )  and it is empty  with the probabil i ty 
( 1 -  2 p ) / ( 1 -  p). Thus, we have that 

P [ y  is a unique site from ~r such that  ~y and ~,(0) ~ 0  I 09, y ]  

>/(1 - p ) -~  min(p,  1 - 2p) 

x P [ y  is a unique site from ~1, such that ,~y I ~o, y-I (48) 

Summing over all y ~ 7/d and integrating over all 09 ~ ,O, we derive from (48) 
that (the first inequality follows from inclusion and the last one is provided 
by Lemma  7) 

P[~,(O) :/: O]/> P [ 3 ! y  ~ M,: #.,, and ~,(0) :~ O] 

min(p,  1 - 2p) (1 - p) min(p,  1 - 2p) 
PE3!y ~ W,: ~,,]/> I 

~> 1 - p  - 8t 
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